检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学土木工程系,土木工程安全与耐久教育部重点实验室,北京100084 [2]中国地震局工程力学研究所,中国地震局地震工程与工程振动重点实验室,哈尔滨150080
出 处:《工程力学》2016年第9期15-20,共6页Engineering Mechanics
基 金:国家自然科学基金项目(51378293,51078199)
摘 要:二维有限元法(FEM)的超收敛计算,借助有限元线法(FEMOL)作为桥梁,分两步采用单元能量投影(EEP)法导出超收敛公式,初步形成"逐维离散、逐维恢复"的方案。然而这一思路直接应用于三维问题却遇到了困扰:一维问题的EEP解(位移和导数)均可达到相同的超收敛阶,而二维问题却难以做到。研究发现,为了得到三维问题的EEP超收敛位移,只需提供二维问题最低阶的超收敛位移即可。该文按此思路推导了非规则网格下三维六面体单元的EEP超收敛位移公式,给出了一个实施方案,并通过数值算例验证了此方案的有效性。In the super-convergence computation of a 2D Finite Element Method(FEM), the "discretization and recovery by dimension" scheme has basically formed by taking the Finite Element Method of Lines(FEMOL) as a bridge and iteratively by adopting the super-convergent formulas derived from the Element Energy Projection(EEP) method. However, when applying this idea to 3D problems, it occurs a puzzle that the EEP solutions(including displacements and derivatives) of 1D problems all share the same super-convergence order whereas those of 2D problems can hardly do. Recent studies show that in order to obtain the EEP super-convergent solution of a 3D problem, the displacement of a 2D problem with the least super-convergence order is merely necessary. Following this idea, this paper derives EEP super-convergent formulas for 3D hexahedron elements on irregular meshes, proposes an implementation scheme, and verifies its effectiveness with numerical examples.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.51.133