检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山西大学计算机与信息技术学院,太原030006 [2]计算智能与中文信息处理教育部重点实验室,太原030006
出 处:《计算机科学》2016年第9期218-222,共5页Computer Science
基 金:国家自然科学基金(61273291;61305073);山西省高校科技创新项目(2014104);山西省回国留学人员科研资助项目(2012-008)资助
摘 要:针对粒子滤波的重要性密度函数选择问题,提出一种基于集合卡尔曼滤波(Ensemble Kalman Filter,EnKF)的改进粒子滤波算法。该方法利用集合卡尔曼滤波产生粒子滤波在每一时刻各粒子的重要性密度函数,在融合最新观测信息的同时,使重要性密度函数更加符合状态的真实后验概率分布。为消除样本枯竭现象,对重采样后的粒子进行马尔科夫链蒙特卡洛处理。在仿真实验中,将新算法用于GPS/DR组合定位系统,与粒子滤波、扩展卡尔曼粒子滤波以及无迹粒子滤波进行比较。仿真结果表明,该算法的估计精度高于传统粒子滤波算法,同时其能够有效控制计算量,并且在粒子数目较少时仍能保证较好的估计性能。An improved particle filtering algorithm based on the ensemble Kalman filter (EnKF) was proposed in this paper starting with the selection of importance density function of the particle filter. At each time instant, the impor- tance density function is generated by EnKF which fuses the latest observation information and propagates the system states by using a collection of sampled state vectors, called an ensemble. In this way, the importance density function can be very close to the true posterior probability. Furthermore, to avoid the particle impoverishment problem, the Markov Chain Monte Carlo method was introduced after resampling process. In the simulation, the developed filter was com- pared with standard particle filter, extended Kalman particle filter and unscented particle filter in GPS/DR integrated system. The simulation results demonstrate the validity of the developed algorithm. Under the same conditions, the new filter is superior to other particle filtering algorithms with the respect to estimation accuracy, as well as it controls the computational load effectively. It is also found that the new filter can obtain outstanding performance even with a small number of particles.
关 键 词:粒子滤波 重要性密度函数 集合卡尔曼滤波 组合定位系统
分 类 号:TP202[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.131.131