检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湘潭大学数学与计算科学学院,湖南湘潭411105
出 处:《计算数学》2016年第4期442-452,共11页Mathematica Numerica Sinica
基 金:国家自然科学基金(11571373;11671343);湖南省教育厅重点项目(14A146)资助项目
摘 要:本文主要在带加性噪声随机分数阶微分方程的基础上,研究了一类更为困难的带乘性噪声随机分数阶微分方程Euler方法的弱收敛性与弱稳定性,并得到了类似的结论.首先构造了数值求解带乘性噪声随机分数阶微分方程的Euler方法,然后证明当分数阶α满足0<α<1/2时,该方法是1/2-α阶弱收敛的和弱稳定的,文末数值试验的结果验证了理论结果的正确性.Based on the stochastic fractional differential equation with additive noise, this paper studied the weak convergence and weak stability of Euler method for a class of stochastic frac- tional differential equation with multiplicative noise, and a similar conclusion is obtained as well. Firstly, the Euler method was constructed to solve the stochastic fractional differential 1/2 -α-order equation with multiplicative noise, and then it was proved that the method was 1 Finally, weak convergence and weak stability when the fractional order a satisfy 0 〈 α 〈1/2. one numerical example is given. The theoretical results are also confirmed by a numerical experiment.
关 键 词:带乘性噪声随机分数阶微分方程 EULER方法 弱收敛性 弱稳定性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147