检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林佳[1,2] 阮晓钢[1,2] 于乃功[1,2] Ouattara Sie 朱晓庆[1,2]
机构地区:[1]北京工业大学电子信息与控制工程学院,北京100124 [2]北京工业大学计算智能与智能系统北京市重点实验室,北京100124
出 处:《北京工业大学学报》2016年第11期1643-1651,共9页Journal of Beijing University of Technology
基 金:国家"973"计划资助项目(2012CB720000);国家自然科学基金资助项目(61573029)
摘 要:对于一次学习手势识别,噪声和全局经验运动约束严重影响时空特征的精确与充分提取,为此提出了一种融合颜色和深度(RGB-D)信息的自适应局部时空特征提取方法.首先建立连续两灰度帧和两深度帧的金字塔以及相应的光流金字塔作为尺度空间.然后根据灰度和深度光流的水平与垂直方差自适应提取运动感兴趣区域(motion regions of interest,MRo Is).接着仅在MRo Is内检测角点作为兴趣点,当兴趣点的灰度和深度光流同时满足局部运动约束时即为关键点,局部运动约束是在每个MRo I内自适应确定的.最后在改进的梯度运动空间计算SIFT-like描述子.Chalearn数据库上的实验结果表明:提出方法得到了较高的识别准确率,其识别性能优于现已发表的方法.Noise and global empirical motion constraints seriously affect extracting accurate and sufficient spatiotemporal features for one-shot learning gesture recognition. To tackle the problem,an adaptive local spatiotemporal feature extraction approach with both color and depth (RGB- D ) information fused was proposed. Firstly,pyramids and optical flow pyramids of successive two gray frames and two depth frames were built as scale space. Then,motion regions of interest ( MRoIs) were adaptively extracted according to horizontal and vertical variances of the gray and depth optical flow. Subsequently,corners were just detected as interest points in the MRoIs. These interest points were selected as keypoints only if their optical flow meet adaptive local gray and depth motion constraints. The local motion constraints were adaptively determined in each MRoI. Finally, SIFT-like descriptors were calculated in improved gradient and motion spaces. Experimental results of ChaLearn dataset demonstrate that the proposed approach has higher recognition accuracy that is comparable to the published approaches.
关 键 词:手势识别 一次学习 时空特征 自适应 运动感兴趣区域
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置] TP391.4[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38