检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王伟[1,2] 冯树清[2] WANG WEI FENG Shuqing(Research Center of the Economy of the upper Reaches of the Yangtze River,Chongqing Technology and Business University,Chongqing, 400067,China Department of finance,Chongqing College of Finance and Economics, Chongqing, 402160,China)
机构地区:[1]重庆工商大学长江上游经济研究中心,重庆400067 [2]重庆财经职业学院金融系,重庆402160
出 处:《教育科学》2016年第4期76-84,共9页Education Science
基 金:重庆市教育科学"十二五"规划重点课题(2015-ZJ-001)的研究成果
摘 要:通过Malmquist指数测算分析了31个省份2003-2013年中等职业教育全要素生产率的变动,发现整体上全要素生产率年均增长3.2%,技术进步是主导因素,西部、中部、东部和东北地区全要素生产率依次下降。进一步的面板模型回归显示,人才培养质量、产业结构和区域经济实力对全要素生产率有促进作用,经费投入、教育结构、人口变迁、硬件设备和师资力量对全要素生产率有约束作用。This paper uses Malmquist Index Approach to analyze secondary vocational education total factor productivity of China's 31 provinces from 2003 to 2013. The results show that: annual growth rate of secondary vocational education total factor productivity is 3.2%, and technological progress is the main factor causing total factor productivity of the country and all provinces. Secondary vocational education total factor productivity decrease followed the sequence of western region, central region, eastern region and northeast region. Further panel regression shows that the quality of personnel training, industrial structure and regional economic strength have positive effects on secondary vocational education total factor productivity,while investment in education, population change, education structure, teaching equipment and teaching staff have restriction effect.
关 键 词:中等职业教育 全要素生产率 MALMQUIST指数 影响因素 面板模型
分 类 号:G710[文化科学—职业技术教育学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117