基于隐马尔科夫模型的猪只状态自动识别技术  被引量:5

Automatic recognition for pig states based on based on hidden Markov model

在线阅读下载全文

作  者:张苏楠[1] 王芳[1] 阎高伟[1] 田建艳[1] 张振华[1] 

机构地区:[1]太原理工大学信息工程学院,太原030024

出  处:《黑龙江畜牧兽医》2016年第11期97-99,103,294,共5页Heilongjiang Animal Science And veterinary Medicine

基  金:"863"国家高技术研究发展计划项目(2013AA102306)

摘  要:为了实现猪只不同状态下声音的自动监测,试验采用声音识别技术,首先将猪只不同状态的声音信号进行双门限端点检测和预加重处理,然后通过大量试验对比,采用小波阈值法对声音信号进行去噪处理,并提取梅尔倒谱系数(MFCC)和一阶差分梅尔倒谱系数(ΔMFCC)作为描述特征,建立隐马尔可夫模型(HMM),最后对猪只不同状态的声音进行自动识别。结果表明:猪只状态识别精度较高,有助于提高自动监测系统的智能化判断能力。In the intensive breeding, automatic recognition technology for pig states under the background of complex noise has an important sig- nificance for automatic breeding. To achieve automatic monitoring of voice from pigs under eight states, sound - recognition technology was used in the test. Firstly, the pig's sound signals in different states were used for double - threshold endpoint detection and pre - emphasis, and then were used for de - noising treatment using the wavelet threshold method through a lot of experimen comparisons. Mel - frequency cepstrum coef- ficient (MFCC) and first - order difference MFCC were extracted as descriptive characteristics to establish a hidden markov model(HMM). Fi- nally, the pig's sounds in different states were automatically recognized. The results showed that the recognition accuracy for pig states was rela- tively higher, and it was helpful to raise the capacity for intelligent judgment in the automatic system.

关 键 词:猪只状态检测 声音识别 隐马尔可夫模型(HMM) 梅尔倒谱系数(MFCC) 一阶差分梅尔倒谱系数 端点检测 预加重 小波阈值去噪 

分 类 号:S828[农业科学—畜牧学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象