检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钱建生[1] 邱春荣[1] 李紫阳[1] 吴响[1,2]
机构地区:[1]中国矿业大学信息与电气工程学院,江苏徐州221116 [2]徐州医学院医学信息学院,江苏徐州221009
出 处:《煤矿安全》2016年第11期173-176,共4页Safety in Coal Mines
基 金:中央高校基本科研业务费专项资金资助项目(2014XT04)
摘 要:为改进工作面煤矿瓦斯涌出浓度的预测精度,基于深度学习网络、SVM和粒子群(PSO)优化算法的原理,建立1种深度学习网络与粒子群优化SVM神经网络耦合的混合算法模型,该算法首先基于深度学习理论学习样本数据较深层次的特征,提取出较少个用来表征原始数据的特征量变量,对特征变量建立PSO-SVM预测模型进行瓦斯涌出浓度预测,通过工作面现场采集的数据进行仿真实验,实验结果表明该方法使预测精度较对原始数据直接进行PSO-SVM预测得到较大的提升,同时实现了原始数据的降维,减少了算法的运行时间,提高了算法效率。In order to improve the accuracy and efficiency of coal and gas outburst prediction, based on the principle of deep learning network, SVM and the particle swarm optimization algorithm, the deep learning network was combined with particle swarm optimization of support vector machine neural network for the prediction of the situation of coal and gas outburst, more profound characteristics of variables can be learned from raw data through deep learning. Then the prediction models were established for a few characteristics by feature extraction which denotes the raw data by using PSO - SVM method to predict the emission concentration of gas instead of the raw data. Through mining workface of a certain coal mine in China to analyze and predict, the results showed that tile approach met the re- quirement that reduced dimensionality of the raw data, and the predict accuracy was improved greatly. Meanwhile, the running time and efficiency of the algorithm was improved through this method.
关 键 词:深度学习 特征提取 SVM神经网络 粒子群优化 瓦斯预测
分 类 号:TD712[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28