蛇形搜救机器人的ORB-SLAM研究  被引量:6

ORB-SLAM Research of Snake-like Rescue Robot

在线阅读下载全文

作  者:原鑫[1,2] 李擎[1,2] 张昊[2,3] 赵旭[2,3] YUAN Xin LI Qing ZHANG Hao ZHAO Xu(University of Beijing Information Science and Technology1 , Beijing 100192, F. R. China Beijing Key Laboratory of High Dynamic Navigation Technology2 , Beijing 100101, P. R. China Beijing Institute of Technology3 , Beijing 100081, P. R. China)

机构地区:[1]北京信息科技大学,北京100192 [2]高动态导航技术北京市重点实验室,北京100101 [3]北京理工大学,北京100081

出  处:《科学技术与工程》2016年第31期229-233,共5页Science Technology and Engineering

基  金:国家自然科学基金(61261160497);国家自然科学基金(61471046);促进高标内涵发展--研究生科技创新项目(5111623313)资助

摘  要:针对蛇形搜救机器人在复杂颠簸的搜救场景中连续获取的单帧图像之间旋转变化剧烈的特点,提出一种结合ORB(oriented FAST and rotated BRIEF)特征检测算子和局部敏感哈希(locality-sensitive hashing,LSH)特征关联算法来完成蛇形搜救机器人的同步定位与建图(simultaneous localization and mapping,SLAM)。该方法具有尺度不变性和旋转不变性,可有效解决特征点的检测与匹配问题。实验平台采用自主研制的具有高清摄像头的蛇形搜救机器人,分别对不同步态、不同场景进行实验验证,结果表明,与传统视觉SLAM相比,该算法计算量小,时效性强,适用于复杂环境下蛇形搜救机器人的工作。As the image search and rescue scene has acquired between neighboring frames by characteristics of high rota ciation algorithm is adopted to complete simultaneous 1 tional changes, ocalization and snake-like rescue robot in complex bumpy ORB feature detection and LSH feature asso- mapping of the snake-like rescue robot. This method is invariant to scale-invariant and rotation-invariance, it can salve the feature point detection and matching problem effectively. Experimental platform used independently developed snake-like rescue robot with a high defini- tion camera, experiment with different scenarios and different movement types, the results demonstrate that, com- pared with the tradition visual SLAM, the algorithm is of small amount of calculation and high real-time, it is suit- able for snake-like rescue robot applications in search and rescue environment.

关 键 词:蛇形搜救机器人 旋转不变性 ORB 局部敏感哈希 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象