检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《模式识别与人工智能》2016年第11期1019-1027,共9页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.61170223);国家自然科学基金联合基金项目(No.U1204610);国家自然科学基金青年基金项目(No.61502434;61502432);河南省教育厅项目(No.15A520099)资助~~
摘 要:偏最小二乘(PLS)跟踪算法忽略特征间及外观模型间的差异,容易受到光照、遮挡等因素的影响,降低目标的跟踪精度.针对上述问题,文中提出基于多外观模型的自适应加权目标跟踪算法(AWMA).首先使用PLS对目标区域逐步建立多个外观模型.然后根据各外观模型中特征的重要性及目标的显著度建立自适应权重的综合模型,融合多个外观模型完成目标与样本的误差分析.最后使用粒子滤波实现目标跟踪.实验表明,文中算法能更有效地过滤噪声数据,提高目标跟踪的鲁棒性和时间性能.Partial least squares (PLS) tracking algorithm ignores the differences among features and those among appearance models. The corresponding tracking is easily affected by the factors, such as illumination and occlusion, and thereby the tracking accuracy decreases. To address these problems in application, an adaptive weight object tracking algorithm based on multi-appearance model (AWMA) is proposed. Firstly, the PLS method is used to gradually establish multiple appearance models for the target region. Then, according to the importance of features and significant degree of object in each appearance model, a comprehensive model with adaptive weights is built. Furthermore, the error analysis between object and sample is accomplished by integrating multiple appearance models. Finally, particle filter is used to achieve object tracking. The experimental results show that the proposed algorithm can effectively filter the noise data and improve tracking robustness and efficiency.
关 键 词:偏最小二乘(PLS) 目标跟踪 多外观模型 自适应加权 粒子滤波
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31