检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑劼[1] 吴文林 万渝平 梁恒兴 肖全伟 朱霞萍[1]
机构地区:[1]成都理工大学材料与化学化工学院,四川成都610059 [2]成都市食品药品检验研究院,四川成都610100
出 处:《食品工业科技》2016年第24期74-77,82,共5页Science and Technology of Food Industry
基 金:科技部国家重大科学仪器设备开发专项(2012YQ09016705)
摘 要:采用电感耦合等离子体原子发射光谱(ICP-AES)测定了四种品牌56个白酒样品(五粮液,郎酒,全兴,五津醇)中的16种元素含量。通过对结果进行z-score标准化,消除各元素间量纲差异,再对其进行主成分分析。结果表明,第一主成分的方差贡献率为40.3%,前十主成分的贡献率达96.3%,基本保留了原变量的所有信息。选择前十主成分建立决策树分类预测模型,模型的交叉验证准确率高达97.6%,再用模型预测未参与建模的15个白酒样品,准确率高达100%。模型能够准确区分五粮液,郎酒,全兴,五津醇四种品牌白酒。The potential of ICP-AES for metal element profiling of Chinese spirit samples was examined.Sixteen elements in fifty six spirits samples representing four varieties of brands (Wuliangye, Lang Liquor, Quanxing, Wujinchun) were determined.The set of data was employed to construct a sample class prediction model based on z-score standardization followed by principal component analysis (PCA) and decision tree analysis ( DT), which was employed to explore the structure of the data and construct classification and prediction model. The first principal component explained 40.3% of variance while the top ten components explained 96.3% of variance which was employed to construct the DT model.The validated DT model based on 5-fold cross-validation enabled correct classification of 97.6% of samples,and other 15 spirit samples could be predict correctly.The Wuliangye, Lang Liquor,Quanxing,Wujinchun could be classified intensively.
关 键 词:白酒 元素 ICP—AES 主成分分析 决策树模型
分 类 号:TS207.3[轻工技术与工程—食品科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28