检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴国栋[1] 戴云仙[1] 马文斌[1] 吴云超[1] 周兰锁[1]
出 处:《内蒙古大学学报(自然科学版)》2016年第6期573-576,共4页Journal of Inner Mongolia University:Natural Science Edition
基 金:内蒙古自治区自然科学基金资助项目(2014MS0117)
摘 要:神经元模型中行波解的稳定性分析大都集中于对激发时间的扰动分析.理论上,行波的稳定性会受到各种形式的扰动影响.就一维θ-模型,从波形扰动进行线性化分析,得出非局部特征方程,经分析发现可以排除单放电行波的本性不稳定性,但经数值计算发现行波对波形的扰动不具有线性稳定性.The stability analysis of traveling waves in neuronal models was mainly focused on the perturbation of spike time in recent years. The stability is related to many kinds of perturba tions. The wave-form perturbation was considered and the nonlocal eigenvalue equation was reduced by linearization around single-spiking traveling waves with one-dimensional theta-neuron model. The essential instability was ruled out, but linear instability about perturbation of wave form was arisen by numerical calculation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.31.32