检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:惠俊军 张合新 陈伊 李明 HUI Jun-jun ZHANG He-xin CHEN Yi LIMing(MailBox 150 Extension 11, Baoji Shanxi 721013, China The Rocket Force Engineering university ,Xi'an 710025,China)
机构地区:[1]陕西省宝鸡市,陕西宝鸡721013 [2]火箭军工程大学,西安710025
出 处:《导航定位与授时》2016年第6期33-39,共7页Navigation Positioning and Timing
摘 要:针对含有飞行时滞的垂直起降(VTOL)直升机系统设计了时滞相关鲁棒非脆弱H_∞控制器。基于时滞中点值把时滞区间均分为两部分,针对每一分割区间构造新的Lyapunov-Krasovskii(L-K)泛函,并结合L-K稳定性定理、积分不等式方法和自由权矩阵技术,建立了新的基于线性矩阵不等式(LMI)形式的时滞相关有界实(BRL)条件。在此基础上设计了该系统的非脆弱H_∞控制器,通过求解线性矩阵不等式的可行解得到控制器的参数化表达式。最后应用于VTOL直升机的飞行控制仿真表明,所设计的控制器具有更好的鲁棒性和非脆弱性。The delay-dependent robust non-fragile H∞ controller for a vertical taking-off and landing( VTOL) helicopter system with flight time-delays is investigated. Based on the delay decomposition method,the whole delay interval is divided into two equidistant subintervals at its central point and new Lyapunov-Krasovskii( L-K) functionals are introduced on these intervals. Then,by using L-K stability theorem,integral inequality method together with free weighting matrix approach,a new delay-dependent BRL is formulated in terms of linear matrix inequality. Based on this,non-fragile H∞ controller is designed for this system. At last,simulation results show that the designed controller has good robust and non-fragile performance.
关 键 词:非脆弱 H∞控制 LYAPUNOV-KRASOVSKII泛函 时滞分解 线性矩阵不等式
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90