检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高强[1,2] 谭述君[1,3] 钟万勰[1,2] GAO Qiang TAN ShuJun ZHONG WanXie(State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian 116024, China Z Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China School of Aeronautics andAstronautics, Dalian University of Technology, Dalian 116024, China)
机构地区:[1]大连理工大学工业装备结构分析国家重点实验室,大连116024 [2]大连理工大学工程力学系,大连116024 [3]大连理工大学航空航天学院,大连116024
出 处:《中国科学:技术科学》2016年第12期1207-1218,共12页Scientia Sinica(Technologica)
基 金:国家自然科学基金(批准号:11272076;11572076);国家重点基础研究发展计划(编号:2014CB049000);教育部新世纪优秀人才支持计划(编号:NCET-13-0072)资助项目
摘 要:对于线性常微分方程初值和两点边值问题,精细积分方法可给出计算机上的精确解.本文总结了精细积分方法的基本思想和算法的进一步发展.在初值问题精细积分方法方面,详细综述了精细积分方法的基本思想、对非齐次项的处理技术、大规模问题求解技术以及时变、非线性微分方程的求解.在两点边值问题精细积分方法方面,介绍了处理边值问题的基本思想和求解过程,总结了两点边值问题精细积分方法在各个领域的应用.最后,讨论了初值和边值问题精细积分方法的联系和区别,从而为精细积分方法的理解和应用提供了新的视角.For the initial value and two-point boundary value problems of linear ordinary differential equation, the Precise Integration Method(PIM) gives exact solutions in the computer accuracy sense. In this paper, the basic idea and the further development of PIM are surveyed. For the initial value problems, the basic idea of PIM, the methods for integrating the nonhomogeneous term, the methods for large scale problems and the application of PIM in time-varying and nonlinear system are surveyed. For two-point boundary value problems, the basic idea and the fundamental formula of PIM are given and the application of the PIM for two-point boundary value problems in many fields are surveyed. Finally, the relationship between the PIM for the initial value and two-point boundary value problems is discussed, which gives a new angle for understanding and application of PIM.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38