检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学(北京)机电与信息工程学院,北京100083
出 处:《工矿自动化》2017年第2期24-28,共5页Journal Of Mine Automation
基 金:国家重点基础研究发展计划(973计划)资助项目(2014CB046300;2014CB046306)
摘 要:针对综放工作面垮落煤岩性状识别的技术问题,提出了一种基于连续小波变换和改进奇异值分解的识别方法。采用基于单边Jacobi的奇异值分解(SVD)方法对小波系数矩阵进行分解,得到与小波系数矩阵列向量位置对应的奇异值向量,并将奇异值向量作为神经网络的输入向量来识别落煤和落岩2种工况。现场试验结果表明,基于连续小波变换与SVD得到的奇异值向量可用于识别垮落煤岩,但基于连续小波变换与改进SVD得到的奇异值向量具有更高的识别率。In order to recognize caving coal and rock traits in fully mechanized caving face, an identification method based on continuous wavelet transform and improved singular value decomposition (SVD) was proposed. The SVD method based on unilateral Jacobi is used to decompose wavelet coefficient matrix, so as to get singular value vectors corresponding to the column vector position of the wavelet coefficient matrix. The singular value vectors are used as input vector of neural network to identify two conditions of falling coal and falling rock. Field test results show that the singular value vectors acquired by the method based on continuous wavelet transform and SVD can be used to identify coal and rock, but the singular value vectors acquired by the method based on continuous wavelet transform and improved SVD has higher identification rate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117