基于自适应变异PSO-BP算法的船舶横摇运动预测  被引量:8

Ship rolling forecasting based on self-adapting PSO-BP algorithm

在线阅读下载全文

作  者:张泽国[1] 尹建川[1] 柳成[1] 

机构地区:[1]大连海事大学航海学院,辽宁大连116026

出  处:《舰船科学技术》2016年第12期69-73,共5页Ship Science and Technology

基  金:国家自然科学基金资助项目(51279106;51009017;51379002);中央高校基本科研业务经费资助项目(3132016116;3132016314);交通部应用基础研究项目(2014329225010);辽宁省自然科学基金资助项目(2014025008)

摘  要:为了准确高效预测船舶在海上的航行状态,以保证人员、货物和船舶的安全,提出一种自适应变异的粒子群优化算法(self-adapting particle swarm optimization algorithm,SAPSO),将该算法与误差反传(back propagation,BP)神经网络结合。SAPSO-BP预测模型使用SAPSO算法优化BP网络的网络参数。克服传统BP神经网络对初始权值阈值敏感,容易陷入局部极小值的缺点,同时也克服了传统PSO算法早熟收敛、搜索准确度低及迭代效率低等缺点。运用该模型对科研教学船"育鲲"轮在海上航行的横摇情况进行实时预测实验,验证该方法的可行性与有效性具有较高的预测精度。In order to predict the navigation state of ship in the wind and waves accurately, timely and efficient and ensure the safety of personnel, cargo and ship. We propose a self-adapting particle swarm optimization (SAPSO) algorithm to optimize the back propagation (BP) neural network model. The proposed model is referred to as SAPSO-BP model which employs PSO to adjust control parameters of BP network. This method overcomes the shortcomings of traditional BP neural network, which is sensitive to the threshold value of the initial value and is easy to fall into local minimum. At the same time, it also overcomes the shortcomings of the traditional PSO algorithm, such as premature convergence, low accuracy, and low efficiency and so on. The measurement data from scientific research and training ship Yukun was chosen as the test database. Simulation results have demonstrated that the proposed method can give predictions for ship rolling motion in real time with high accuracy and satisfactory stability.

关 键 词:船舶横摇运动 前向神经网络 自适应变异 粒子群优化算法 时间序列预测 

分 类 号:U661.3[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象