检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东理工大学信息科学与工程学院,上海200237
出 处:《华东理工大学学报(自然科学版)》2017年第1期113-118,共6页Journal of East China University of Science and Technology
基 金:国家自然科学基金(60974066)
摘 要:大规模隐式反馈数据的使用是推荐系统中的研究热点和难点问题。针对隐式反馈数据高噪声和缺少负反馈的特点,以音乐推荐为背景,在研究概率矩阵分解模型(PMF)的基础上提出了一种直接优化排名倒数(RR)的概率矩阵分解模型(RR-PMF)。通过与User-based KNN算法相结合提出了RR-UBPMF算法,并利用交叉最小二乘法(ALS)进行优化学习。在last.fm数据集上的实验结果表明,该算法在准确率(Precision)、尤其是在标准化折算累加值(NDCG)等评价指标上表现出极大的优势,能够明显提高预测准确性,并且具有良好的可拓展性。The application of massive implicit feedback data is one of hot and difficult issues in the research of recommendation system.Aiming at the high noise and less negative feedback of implicit feedback data,this paper proposes a model of RR-PMF based on probabilistic matrix factorization(PMF),which optimizes the ranked reciprocal(RR)directly.By combining with the user-based KNN,this paper proposes a RR-UBPMF method,which is optimized via alternative least squares(ALS).The experiment via the last.fm dataset shows that the proposed algorithm has great advantages in the evaluation index of precision and NDCG,and can significantly improve the prediction accuracy and has good scalability.
关 键 词:推荐系统 协同过滤 排名倒数 概率矩阵分解 KNN
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143