检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:霍其润[1,2] 陆耀[1] 刘羽[2] 巢进波[1]
机构地区:[1]北京理工大学计算机学院,北京100081 [2]首都师范大学信息工程学院,北京100048
出 处:《中国图象图形学报》2017年第3期297-304,共8页Journal of Image and Graphics
基 金:国家自然科学基金项目(61273273);教育部博士点专项基金项目(20121101110043)~~
摘 要:目的目标跟踪在实际应用中通常会遇到一些复杂的情况,如光照变化、目标变形等问题,为提高跟踪的准确性和稳定性,提出了一种基于相位一致性特征的度量学习跟踪方法。方法首先对目标区域提取相位一致性特征,其次结合集成学习和支持向量机的优点,利用度量学习的思想进行区域的相似性判别,以此来确定目标所在位置。跟踪的同时在线更新目标模型和度量矩阵从而实现自适应性。结果算法的有效性在有外观、光照变化及遮挡等具有挑战性的视频序列上得到了验证,并与当前几种主流方法进行了跟踪成功率和跟踪误差的定量比较,实验结果显示本文算法在4组视频上的跟踪误差平均为15个像素,跟踪成功率最低的也达到了80%,优于其他算法,具有更好的跟踪准确性和稳定性。结论本文设计并实现了一种基于度量学习的跟踪新方法,利用较少的训练样本即可学习到有判别力的度量矩阵。该跟踪方法对目标特征的维数没有限制,在高维特征空间的判别中更有优势,具有较好的通用性,在有外观、光照变化及遮挡等复杂情况下,均能获取较为准确和稳定的跟踪效果。Objective Object tracking is an important research area in computer vision and has been widely adopted both in military and civilian applications. Improving tracking accuracy and stability in realistic scenarios that involve appearance change, occlusion, and illumination change is still difficult for practical application. A tracking method based on the phase congruency transformation and metric learning was presented to solve the aforementioned problem.Methods This study formulates object tracking as a matching task to find a candidate, which is most similar to the target model, over the subsequent image frames. This process is largely controlled by two factors:the selected features that characterize objects and the distance metric used to determine the closest match in the selected feature space. First, the features were extracted by phase congruency transformation. Combining the advantages of ensemble learning and support vector machine (SVM), we then introduce a type of ensemble metric learning to obtain a distance metric matrix utilizing a small number of training data extracted from the fore sequence of images. Most approaches directly solve the optimal metric matrix and induce a large increase in the calculation as the feature dimension increases. In contrast, our method indirectly obtains the projection matrix by learning multiple projection vectors; thus, it is simple and efficient even with high-dimension features. Candidates are obtained by Markov chain Monte Carlo sampling and calculate the distance from the target model utilizing the learned metric matrix in the tracking process. The candidate with the smallest distance value is regarded as the target. Moreover, the object model and metric matrix are constantly updated with new training data extracted during tracking for adaptability.Results The effectiveness of the algorithm has been verified on several challenging video sequences that contain a dynamic background, appearance changes, and occlusions. The AEMTrack algorithm proposed in this stu
关 键 词:视觉跟踪 相位一致性 度量学习 外观变化 自适应
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145