检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南通大学理学院数学系,南通226019 [2]扬州大学数学科学学院,扬州225100
出 处:《应用数学学报》2017年第2期192-203,共12页Acta Mathematicae Applicatae Sinica
基 金:国家自然科学基金(11271316);江苏省自然科学基金(BK20161278)资助项目
摘 要:本文研究一类带有临界型非线性项的强阻尼波动方程.当指数1/2<θ<1时,利用能量泛函的性质,我们证明了由方程导出的C_0半群T(t)的紧性和耗散性,以及整体吸引子的存在性.当θ=1时,利用磨光与逼近,我们研究了磨光半群T_v(t)随t→∞时的一致渐近行为,以及它们在任意有界区间上强收敛到T(t)的一致性,并把T(t)的整体吸引子表示为磨光半群T_v(t)整体吸引子的上半极限.This paper deals with a class of strongly damped wave equations u tt+η(- △) θut+ (-△)u = f(u) with critical nonlinearities. The main task is to prove the existence of the global attractor of C0-semigroup T(t) derived by the wave equation for critical growth indicator ρ = (N + 2)/(N - 2) under Lipshitz and dissipative conditions. In case 1/2 〈 θ ≤ 1, by studying the energy functional attached to T(t), we prove that, every bounded subset of the energy space is absorbed uniformly by a bounded set B0 independent of the index θ, which combined with the compactness of T(t), leads to the existence of the global attractor. And in case θ = 1, the method of modification and approximation are adopted. We show that all the modified semigroups Tv(t)(v ∈ (0, 1]) exhibit the same asymptotic behavior as t → ∞, and they converge to T(t) in strong topology uniformly on bounded intervals as v →∞. Based on these properties, we prove the existence of the global attractor, which can be represented by the upper limit of attractors of modified semigroups.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.121.190