带有临界型非线性项的强阻尼波动方程的整体吸引子  被引量:2

Global Attractors of Strongly Damped Wave Equations with Critical Nonlinearities

在线阅读下载全文

作  者:张庆华[1] 李刚[2] 

机构地区:[1]南通大学理学院数学系,南通226019 [2]扬州大学数学科学学院,扬州225100

出  处:《应用数学学报》2017年第2期192-203,共12页Acta Mathematicae Applicatae Sinica

基  金:国家自然科学基金(11271316);江苏省自然科学基金(BK20161278)资助项目

摘  要:本文研究一类带有临界型非线性项的强阻尼波动方程.当指数1/2<θ<1时,利用能量泛函的性质,我们证明了由方程导出的C_0半群T(t)的紧性和耗散性,以及整体吸引子的存在性.当θ=1时,利用磨光与逼近,我们研究了磨光半群T_v(t)随t→∞时的一致渐近行为,以及它们在任意有界区间上强收敛到T(t)的一致性,并把T(t)的整体吸引子表示为磨光半群T_v(t)整体吸引子的上半极限.This paper deals with a class of strongly damped wave equations u tt+η(- △) θut+ (-△)u = f(u) with critical nonlinearities. The main task is to prove the existence of the global attractor of C0-semigroup T(t) derived by the wave equation for critical growth indicator ρ = (N + 2)/(N - 2) under Lipshitz and dissipative conditions. In case 1/2 〈 θ ≤ 1, by studying the energy functional attached to T(t), we prove that, every bounded subset of the energy space is absorbed uniformly by a bounded set B0 independent of the index θ, which combined with the compactness of T(t), leads to the existence of the global attractor. And in case θ = 1, the method of modification and approximation are adopted. We show that all the modified semigroups Tv(t)(v ∈ (0, 1]) exhibit the same asymptotic behavior as t → ∞, and they converge to T(t) in strong topology uniformly on bounded intervals as v →∞. Based on these properties, we prove the existence of the global attractor, which can be represented by the upper limit of attractors of modified semigroups.

关 键 词:负拉普拉斯算子 强阻尼 波动方程 临界型非线性项 能量泛函 整体吸引子 

分 类 号:O175.26[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象