检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《四川师范大学学报(自然科学版)》2017年第2期177-183,共7页Journal of Sichuan Normal University(Natural Science)
基 金:国家自然科学基金(11361045)
摘 要:针对一维波动方程,空间采用四阶Padé逼近,时间采用中心差分离散得到了一种时间二阶、空间四阶精度的显式紧致差分格式,其截断误差为O(τ~2+h^4).之后采用截断误差余项修正的方法对时间离散进行改进,改进后的格式的截断误差为O(τ~4+τ~2h^2+h^4),即格式具有整体四阶精度.然后,通过Fourier方法分析了2种格式的稳定性.最后,通过数值实验验证了本格式的精确性和可靠性.In this paper,an explicit compact difference scheme is obtained for solving the one dimensional wave equation. The truncation error of the scheme is O( τ^2+ h^4). It's constructed by applying the fourth-order accurate Padé approximation in space and the second-order accurate central difference in time. Then,the remainder of the truncation error correction method is employed to improve the accuracy of the discretization of time,the truncation error of the improved scheme is O( τ^4+ τ^2h^2+ h^4),which means the scheme has an overall fourth-order accuracy. And then,the stability conditions of the two schemes are obtained by the Fourier method.Finally,the accuracy and the reliability of the present two schemes are verified by numerical experiments.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222