检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《河北工业大学学报》2017年第1期40-47,共8页Journal of Hebei University of Technology
基 金:国家自然科学基金(10632040)
摘 要:针对圆型限制性三体问题(CR3BP)研究了显式辛积分格式的构造问题.首先通过把CR3BP对应的哈密顿函数拆分成若干个二阶幂零哈密顿系统,得到每个二阶幂零哈密顿系统对应的显式欧拉格式.然后证明了每个显式欧拉格式都是自共轭算子,针对这样的特点提出了一种由这些欧拉格式复合得到的显式组合辛格式.最后利用本文提出的显式辛格式与其他积分器求解了CR3BP下的一般轨道和Halo轨道,验证了显式辛格式有效性和优越性.研究发现显式辛格式能长时间保持系统能量误差在一定范围内波动不会出现发散,且计算精度高于同阶的非辛算法.The problem of construction of explicit symplectic scheme is investigated based on circular restricted three-body problem(CR3BP). To begin with, by separating original CR3BP Hamiltonian function into several systems with nilpotent of degree two, explicit symplectic Euler schemes with respect to different systems with nilpotent of degree two are found. Secondly, all the explicit symplectic Euler schemes are proved to be self-conjugate operators. As a result, explicit composite symplectic schemes are proposed in the paper by combining those Euler schemes. Finally, a numerical simulation study is conducted by using fourth-order explicit composite symplectic scheme and other integrators to calculate the regular orbit and halo orbit in CR3BP, and the availability and superiority of explicit symplectic scheme are verified. The results show that explicit symplectic scheme leads to oscillation of the system energy error in a certain range instead of error dissipation over the long term. Moreover, symplectic algorithms possess higher numerical accuracy than traditional Runge-Kutta methods with the same order.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.44.53