基于频繁子树模式的评价对象抽取  被引量:1

Extraction of Opinion Targets Based on Frequent Sub-tree Pattern

在线阅读下载全文

作  者:田卫东[1] 苗惠君[1] 

机构地区:[1]合肥工业大学计算机与信息学院,合肥230009

出  处:《计算机工程》2017年第4期222-227,共6页Computer Engineering

基  金:国家"863"计划项目(2012AA011005);国家自然科学基金(61273292);情感计算与先进智能机器安徽省重点实验室开放课题(ACAIM2015xxx)

摘  要:现有的评价对象抽取方法多基于启发式规则或者基于词性、词形等特征的机器学习方法,未能较好地利用依存分析所揭示出的深层句法关联关系。为此,基于从依存关系树库所挖掘的频繁树模式,提出一种针对中文评论性短文本的评价对象抽取方法。该方法基于依存关系频繁子树模式进行短文本的初始标注,采用错误驱动框架的方法提炼出能反映评价对象特征的频繁子树模式有序模式规则集,并利用该规则集进行评价对象的抽取。实验结果表明,该方法具有较好的稳定性与准确性,在召回率和F1值等评价指标上优于基于支持向量机的方法。Most existing opinion target extraction methods are based on the heuristic rules or machine learning using features such as part of speech,morphology and etc. ,but the defect of these methods is that deep association relationship mined by dependency syntax analysis is not used. In order to solve this problem, a novel opinion target extraction method for Chinese short critical texts is proposed based on frequent tree patterns mined from dependency relation tree bank. First, this method labels the initial tagging opinion target based on frequent sub-tree patterns, and then it trains out an ordered rule set based on error-driven TBL framework which can be related to the combination of opinion targets. Finally, opinion target is extracted based on the ordered rule set. Experimental results show that this method has good stability and precision, and is better than Support Vector Machine(SVM)-based method on indicators such as recall and Fl-score.

关 键 词:依存句法 短文本 频繁子树模式 错误驱动 支持向量机 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象