检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学数学学院,成都610064
出 处:《应用数学学报》2017年第3期422-435,共14页Acta Mathematicae Applicatae Sinica
基 金:国家自然科学基金(11401124)资助项目
摘 要:针对抛物问题提出一种新的投影混合稳定化方法.该方法基于等阶的混合有限元,相比通常的局部投影稳定化方法,增加了新的投影稳定项及压力跳跃项,有效地克服了等阶有限元不满足inf-sup条件而导致的解的不稳定性,也保证了该方法不仅对连续的压力空间适用,且对不连续的压力空间亦适用.本文证明了该方法的稳定性,并给出了误差估计.最后,数值算例验证了该方法的理论分析及有效性.A new projection-type stabilized formulation for the parabolic problem is pro- posed. The method is based on the same equal-order mixed finite element space for both re- gions. Compared with usual local projection stabilization methods, we add a new projection- type stabilization term and a pressure jump term, which can effectively bypass the inf-sup condition. It also ensures that our technique can be applied to not only continuous pressure space but also discontinuous pressure space. The stability of the proposed scheme is proved. Error estimates are obtained. At last, some numerical experiments are given to verify our theoretical results and the efficiency.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49