检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学理学院,西安710129 [2]陕西科技大学文理学院,西安710021
出 处:《自动化学报》2017年第5期778-788,共11页Acta Automatica Sinica
基 金:国家自然科学基金(61201323)资助~~
摘 要:针对视觉词袋(Bag-of-visual-words,BOVW)模型直方图量化误差大的缺点,提出基于稀疏编码的图像检索算法.由于大多数图像特征属于非线性流形结构,传统稀疏编码使用向量空间对其度量必然导致不准确的稀疏表示.考虑到图像特征空间的流形结构,选择对称正定矩阵作为特征描述子,构建黎曼流形空间.利用核技术将黎曼流形结构映射到再生核希尔伯特空间,非线性流形转换为线性稀疏编码,获得图像更准确的稀疏表示.实验在Corel1000和Caltech101两个数据集上进行,与已有的图像检索算法对比,提出的图像检索算法不仅提高了检索准确率,而且获得了更好的检索性能.In the BOVW (bag-of-visual-words) model, histogram quantization would result in a bigger error for image retrieval. Considering this shortcoming, a new image retrieval algorithm based on sparse coding is proposed. Most image features belongs to nonlinear manifold structure, trot the traditional sparse coding uses vector space to measure image feature space, which must lead to an inaccurate sparse representation. Owing to the manifold structure of image features space, symmetric positive definite matrices are selected as feature descriptors to build a Riemannian manifold space. Through the kernel method, the Riemann manifold structure is mapped into the reproducing kernel Hilbert space, and nonlinear umnifold is converted into linear sparse coding, so the image can acquire a more accurate sparse representation. Experiments are performed on the Corel1000 database and Caltech101 database. In comparison with the existing image retrieval algorithms, the new image retrieval algorithm largely improves the retrieval accuracy and has a better efficiency.
关 键 词:稀疏编码 黎曼几何 流形结构 对称正定矩阵 希尔伯特空间 图像检索
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120