基于用户偏好的协同过滤推荐算法  被引量:2

Collaborative filtering recommendation algorithm based on user preference

在线阅读下载全文

作  者:杨恒宇[1,2] 胡学钢[1] 林耀进[3] 

机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009 [2]安徽省科学技术情报研究所,安徽合肥230011 [3]闽南师范大学计算机学院,福建漳州363000

出  处:《合肥工业大学学报(自然科学版)》2017年第5期619-623,700,共6页Journal of Hefei University of Technology:Natural Science

基  金:国家重点基础研究发展计划(973计划)资助项目(2013CB329604);国家自然科学基金资助项目(61273292);安徽省科技厅年度重点科研资助项目(1301023012)

摘  要:在用户的协同过滤推荐模型中,用户对项目评分的偏好行为会导致计算用户之间的相似性出现偏差,影响推荐的质量。文章根据用户的评分习惯划分用户,利用大间隔寻找用户的近似邻居,提出了一种基于用户偏好的协同过滤推荐算法,首先引入一种新的相似性度量方法计算用户之间的相似度,再构建一种基于用户偏好的协同过滤推荐模型。实验结果表明,该算法能有效提高推荐质量。Users have different rating preference in the model of the user-based collaborative filtering recommendation, and the preference behavior leads to the deviation of calculating the similarity among users. Consequently, the recommendation quality of systems is restricted, On this basis, all users are divided into different groups according to user's preference behavior, and the method of large margin is presented to define user's neighborhood, and an algorithm of collaborative filtering recommendation based on user preference is proposed. Firstly, the similarity among users is calculated by introducing a new similarity measure method. Then a model of collaborative filtering recommendation based on user preference is constructed. Finally, the experimental results show that the proposed algorithm can im- prove the recommendation quality effectively.

关 键 词:协同过滤 用户偏好 大间隔 相似性 

分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象