检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2017年第6期1670-1673,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(61273219;61673120);教育部高等学校博士学科点专项科研基金资助项目(20134420110003)~~
摘 要:针对单输入单输出非线性系统的不确定性问题,提出了一种新型的基于扩展反向传播(BP)神经网络的自适应控制方法。首先,采用离线数据来训练BP神经网络的权值向量;然后,通过在线调节伸缩因子和逼近精度估计值的更新律,从而来达到控制整个系统的目的。在控制器的设计过程中,利用李亚普诺夫稳定性分析原理,保证了闭环系统的所有状态一致终极有界(UUB)。相比传统的BP神经网络自适应控制,所提方法能有效地减少在线调节的参数数目、减轻计算负担。仿真结果表明,该方法能够使闭环系统的所有状态都趋于零,即系统达到稳定状态。Aiming at the uncertainty of Single-Input-Single-Output (SISO) nonlinear systems, a novel adaptive control design based on extended Back Propagation (BP) neural network was proposed. Firstly, the weight vectors of BP neural network were trained via the offline data. Then, the scaling factor and estimation parameter of approximate accuracy were adjusted online to control the whole system by update law. In the design process of controller, with the Lyapunov stability analysis, the adaptive control scheme was proposed to guarantee that all the states of the closed-loop system were Uniformly Ultimately Bounded ( UUB). Compared with the traditional adaptive control method of BP neural network, the proposed method can effectively decrease the parameter number of online adjustment and reduce the burden of computation. The simulation results show that the proposed method can make all the states of the closed-loop system tend to be zero, which means the system reaches the steady state.
关 键 词:非线性系统 自适应控制 反向传播神经网络 一致终极有界 稳定性
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222