检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东工业大学,应用数学学院,广州510520 [2]Stellenbosch大学,数学系及开普顿数学中心
出 处:《生态科学》2017年第3期135-141,共7页Ecological Science
基 金:国家自然科学青年基金项目(11401115);国家自然科学面上项目(31670391);国家留学基金委国家公派高级研究学者及访问学者(含博士后)项目(201508440178)
摘 要:文章介绍了一类用以描述由自然选择作用引起物种表型进化的动态模型。该模型通过反应扩散方程和积分微分方程表达种群内不同表型特性间可能的竞争、利用与互惠等生态作用,进而导致可能的定向和分歧选择,从而实现表型特征的收敛和分岔动态,形成种内和种间的多样化。通过举例和数值模拟发现,该模型对于解释同域物种形成和生物间相互作用对表型进化的影响具有重要的理论价值。文章进一步说明表型特征的稳定进化分布与进化稳定对策理论的一致性。Adaptive dynamics of functional traits for interacting and coevolving species is the crux of ecology and evolution. We here introduce the dynamical model of evolutionary distribution (ED) that encapsulates the evolutionary dynamics of functional traits under natural selection. Such models are formulated in the form of partial differential equations of the reaction-diffusion type, using integro-differential equations to express trait-mediated ecological interactions and the diffusion trait mutation. The ED model can thus portray the adaptive dynamics of interacting traits for coevolving species under typically frequency- or density-dependent selection due to reciprocal biotic interactions such as competition, antagonism and mutualism. Traits of coevolving species can converge or diverge in the ED model, respectively, through directional and disruptive selection, resulting in a wide range of intra- and inter-specific evolutionary trajectories and possibilities, such as the Red Queen dynamics and adaptive diversification. Using a simple system with species competing for resources, we demonstrate the potential of using such models for investigating the emergence of polymorphism and sympatric speciation, as well as the effects of the types and strengths of ecological interactions on phenotypic evolution. We show that the stable evolutionary distribution of functional traits actually corresponds to the evolutionarily stable strategy (ESS) of the multiplayer evolutionary game. The ED model is, thus, a powerful tool for exploring the diverse and complex trajectories of coevolutionary systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166