检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊鹏飞 张秉儒[2] XIONG Pengfei ZHANG Bingru(Qinghai Traffic Vocational Technical College 810016 ,China Department of Mathemetics,Qinghai Normal University,Xining 810008,China)
机构地区:[1]青海交通职业技术学院,青海西宁810016 [2]青海师范大学数学系,青海西宁810008
出 处:《南昌大学学报(理科版)》2017年第2期108-113,共6页Journal of Nanchang University(Natural Science)
基 金:国家自然科学基金资助项目(10861009;10761008);青海省自然科学基金资助项目(2011-Z-911)
摘 要:设P_n和C_n是具有n个顶点的路和圈,S_n是n个顶点的的星图,nG表示n个图G的不相交并。S_(rp+1)~G表示把星S_(r+1)的r个1度点分别与rG的每个分支的第i个顶点重迭后得到的图,可简记为S_(δ+1)~G,δ=rp;设m是自然数,图P_((2 m+1)+(m+1)δ)~SG是表示把(m+1)S_(δ+1)~G的每个分支的r度顶点分别与P_(2m+1)的下标为奇数的m+1个顶点重迭后得到的图,运用图的伴随多项式的性质,讨论了图簇PP_((2 m+1)+(m+1)δ)~SG∪K1(m为奇数)和P_((2 m+1)+(m+1)δ)~SG∪S_(δ+1)~G(m为偶数)的伴随多项式的因式分解式,令m=2^(k-1) q-1,λ_k=(2~kq-1)+2^(k-1)qδ,讨论了图簇P_λk^(SG)∪(k-1)K_1和P_λk^(SG)的伴随多项式的因式分解式,进而证明了这些图的补图的色等价性。Let Pnbe a path with nvertices,Cn be a cycle with n vertices,Sn be a star with n vertices,and nG be the union of ngraphs G without common vertex.It denoted by Srp+1^G the graph consisting of Sr+1 and rG by coinciding r vertices of degree 1 of S(rp+1) with the ith vertex of every component of rG,respectively,abbreviated as Sδ+1^G,δ=rp;Let m be a nature number,P(2 m+1)+(m+1)^SG δbe the graph consisting of(m+1)Sδ+1^G and P(2m+1) by coinciding the vertex of degree r of every component of (m+1)Sδ+1^G with m+1vertices whose subscripts are odd of P2 m+1,respectively.By using the properties of adjoint polynomials of graphs,it discussed the factorizations of adjoint polynomials of graphs P(2 m+1)+(m+1)δ^SG ∪ K1(where m is odd)and P(2 m+1)+(m+1)δ^SG∪Sδ+1^G(where m is even).Letting m=2^kq-1andλn=(2^nq-1)+2^n-1qδ,it discussed the factorizations of adjoint polynomials of graphs Pλk^SG∪(k-1)K1 and Pλk^SG.Furthermore,it proved the chromatic equivalence of complements of these graphs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.174.103