检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京大学计算机科学与技术系南京大学软件新技术国家重点实验室,南京210023
出 处:《自动化学报》2017年第8期1306-1318,共13页Acta Automatica Sinica
基 金:国家自然科学基金(61422203)资助~~
摘 要:细粒度图像分类问题是计算机视觉领域一项极具挑战的研究课题,其目标是对子类进行识别,如区分不同种类的鸟.由于子类别间细微的类间差异和较大的类内差异,传统的分类算法不得不依赖于大量的人工标注信息.近年来,随着深度学习的发展,深度卷积神经网络为细粒度图像分类带来了新的机遇.大量基于深度卷积特征算法的提出,促进了该领域的快速发展.本文首先从该问题的定义以及研究意义出发,介绍了细粒度图像分类算法的发展现状.之后,从强监督与弱监督两个角度对比分析了不同算法之间的差异,并比较了这些算法在常用数据集上的性能表现.最后,我们对这些算法进行了总结,并讨论了该领域未来可能的研究方向及其面临的挑战.Fine-grained image categorization is a challenging task in the field of computer vision, which aims to classify sub-categories, such as different species of birds. Due to the low inter-class but high intra-class variations, traditional categorization algorithms have to depend on a large amount of annotation information. Recently, with the advances of deep learning, deep convolutional neural networks have provided a new opportunity for fine-grained image recognition. Numerous deep convolutional feature-based algorithms have been proposed, which have advanced the development of fine- grained image research. In this paper, starting from its definition, we give a brief introduction to some recent developments in fine-grained image categorization. After that, we analyze different algorithms from the strongly supervised to and weakly supervised ones, and compare their performances on some popular datasets. Finally, we provide a brief summary of these methods as well as the potential future research direction and major challenges.
关 键 词:细粒度图像分类 深度学习 卷积神经网络 计算机视觉
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117