检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安科技大学机械工程学院,陕西西安710054
出 处:《电源技术》2017年第9期1356-1357,1368,共3页Chinese Journal of Power Sources
基 金:陕西省教育厅科学研究项目(11JK0869)
摘 要:精确估计电动汽车用动力锂离子电池荷电状态(SOC)对于电动汽车的续航里程的估计和动力电池的安全保护具有重要的意义。针对锂离子电池的非线性关系,采用BP神经网络法来估算SOC。以3.2 V/100 Ah的磷酸锂铁电池为研究对象,在恒温条件下采用Arbin BT2000系列的充放电测试仪进行充放电实验采集原始数据,并将数据导入到神经网络模型中去训练和验证。验证结果表明:用BP神经网络法估算SOC的误差能控制在5%以内,验证了模型的准确性,为相似的SOC估计算法的改进提供参考和依据。Accurately estimate the state of charge (SOC) of power lithium ion batteries for electric vehicles was ofgreat significance to the estimation of the endurance mileage of electric vehicles and the safety protection of thepower battery. In view of the nonlinear relation of the lithium ion battery, the BP neural network method was used toestimate the SOC. The research object was lithium iron phosphate battery (3.2 V/100 Ah). The charge and dischargeexperiments were done by the charge discharge tester ArbinBT2000 under the constant temperature, and the rawdata was collected. Finally the data was imported into the neural network model to train and verify. The validationresults show that the error of SOC can be controlled within 5% by the BP neural network method. The accuracy ofthe model was verified, which provided reference and basis for the improvement of similar SOC estimation algorithm.
关 键 词:BP神经网络 电动汽车 动力电池 充放电测试仪 SOC估计
分 类 号:TM912.9[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229