检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王兴科[1] 王娟[1] WANG Xingke WANG Juan(Shaanxi Railway Institute, Weinan 714000, Shaanxi, China)
机构地区:[1]陕西铁路工程职业技术学院,陕西渭南714000
出 处:《隧道建设》2017年第9期1105-1113,共9页Tunnel Construction
摘 要:为解决基坑变形预测精度低的问题,采用小波去噪分离基坑变形的趋势项及误差项序列,并利用多种优化的支持向量机对趋势项序列进行预测,采用混沌BP神经网络对误差项序列进行预测,将两者预测结果进行叠加即得到变形预测值,且可根据后期监测数据的更新,实时增加数据信息,达到跟踪预测的目的。经过3个实例检验,得出小波函数的去噪效果相对较优,且预测结果的相对误差均值均小于2%,验证了优化支持向量机-混沌BP神经网络模型的有效性,且该模型具有预测精度高、适用性强等优点,对掌握基坑变形的发展趋势及评价基坑的稳定性具有重要意义。The accuracy of deformation prediction of foundation pit is low by using traditional methods. As a result, the tendency item and error item sequence of foundation pit deformation are separated by wavelet; the tendency item sequence is predicted by some optimized support vector machines; the error item sequence is predicted by chaotic BP neural network. The deformation prediction results of foundation pit can be obtained by superposition of the two prediction results; and the tracing prediction can be realized by adding later monitoring data uploading. According to case study results, the denoising effect of the wavelet functions are relatively superior and the mean relative error of the prediction results are less than 2%, which verify the validity, prediction accuracy and high adaptability of the optimized support vector machine-chaotic BP neural network model.
关 键 词:基坑变形预测 小波去噪 支持向量机 BP神经网络 趋势项预测 误差项预测
分 类 号:U452[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166