检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学力学与工程学院,四川成都610031
出 处:《西南交通大学学报》2017年第5期1015-1019,共5页Journal of Southwest Jiaotong University
基 金:国家自然科学基金资助项目(11272268;11172246)
摘 要:为研究可积哈密顿系统的不变环面在小扰动下的保持性问题,建立了极坐标系下圆盘转动系统的哈密顿方程.首先,通过能量守恒的初积分将两自由度系统转化为二阶状态变量方程形式的单自由度系统;其次,在此基础上,利用KAM(Kolmogorov-Arnold-Moser)定理证明了不变环面的存在性;最后,对圆盘转动系统的动力学特性进行了数值模拟,结果表明:系统的时程曲线是周期的,相图稠密环绕,庞加莱映射为一条闭曲线;系统做拟周期运动,可积哈密顿系统的不变环面在小扰动下仍然存在,庞加莱映射的闭曲线对应着系统的KAM不变环面.In order to study whether the invariant torus of integrable Hamiltonian systems is retained under small perturbations, we established the Hamiltonian equations in polar coordinates. Using the first integral of the energy conservation equation, the transformation of the second-order state variable from a system with two degrees of freedom into a system with a single degree of freedom was analysed. Secondly, based on the Kolmogorov -Arnold-Moser (KAM) theorem, the existence of invariant tori in the perturbed system was confirmed. Finally, numerical simulations were performed to elucidate the analysis. The results show that the time history curve of the system is periodic, the phase portrait is dense, and the Poincare map is a closed curve. The system is quasi- periodic, and the invariant torus of the integrable Hamiltonian system is shown to still exist under small perturbations. Moreover, the closed curve Poincare mapping corresponds to the KAM invariant closed curve.
分 类 号:O313[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3