检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓勇 DENG Yong(College of Mathematics and Statistics, Kashgar University, Kashgar, Xininjiang, 844006, Chin)
机构地区:[1]喀什大学数学与统计学院,新疆喀什844006
出 处:《新疆师范大学学报(自然科学版)》2017年第3期57-60,共4页Journal of Xinjiang Normal University(Natural Sciences Edition)
摘 要:对矩阵方程AXB=C关于反射矩阵的自反(反自反)解的讨论,通常借助的是矩阵分解、广义奇异值分解或共轭梯度法。为了更加有效和简洁地研究矩阵方程AXB=C的自反(反自反)解,利用矩阵的广义逆和广义反射矩阵给出了其存在自反解的充分必要条件。在有解的情况下,得到了其通解的一般表达式,并揭示出文献[1]的结果是该结果当B=I时的特例。The discussion of the reflexive (anti-reflexive) solutions of the matrix equation AXB=C with respect to the reflection matrix is usually utilize matrix decomposition, generalized singular value decomposition or conjugate gradient method. In order to study the reflexive (anti-reflexive) solutions of matrix equation AXB=C more effectively and concisely, the necessary and sufficient conditions for the existence of reflexive solutions are given by using the generalized inverse and generalized reflection of the matrix. In this ease, the general expression of its general solution is obtained and the result of the literature [1] is revealed as a special case when B=I.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.136.24