水冷壁磨损检测机器人控制系统的设计与研究  被引量:4

Design and Study of Water Wall Wear Detection Robot Control System

在线阅读下载全文

作  者:李静[1] 邢扬[1] 俞竹青[1] 

机构地区:[1]常州大学机械工程学院,江苏常州213100

出  处:《计算机测量与控制》2017年第10期62-65,共4页Computer Measurement &Control

基  金:科技部中小企业技术创新基金项目(14C26213201195)

摘  要:为了有效提高石化行业对锅炉水冷壁壁厚的检测效率,设计了一种磁吸附履带式爬壁机器人,并在此载体上采用分级控制系统来共同实现高空检测;首先,下位机使用ARM Cortex-M3为内核的32位微控制器,并采用模糊PID控制方法实现对锅炉水冷壁磨损检测机器人的位姿进行控制,完成直线路径跟随动作;除此之外,还配备超声波无损检测技术、图像采集器以及位移传感器等,来实现锅炉水冷壁磨损检测机器人最终管壁实时图像视频以及检测数据的采集;其次,基于Visual Studio 2010平台创建人机交互界面,实现与下位机的数据传输以及后续检测数据处理;最后,实验仿真证明该分级控制系统运动稳定可靠,上下位机能实时通讯,提高了爬壁机器人的工作速度和处理能力,有效提高检测效率,具有较高的智能化水平。In order to effectively improve the detection efficiency of the boiler water wall thickness in the petrochemical industry,this system designs magnetic adsorption wall-climbing robot as the carrier,by adopting the combination of upper and lower machine control method to realize high altitude detection.Firstly,the lower computer uses the ARM Cortex-M3 as the core of the 32-bit micro-controller,and the fuzzy PID control method is adopted to realize the control of the position of boiler water wall wear inspection robot,complete the straight path to follow the action.In addition,it is equipped with ultrasonic nondestructive testing technology,image acquisition and displacement sensor,etc.,to achieve the boiler water wall wear detection robot final wall real-time image video and test data collection.Secondly,based on Visual Studio 2010 platform to create human-computer interaction interface,with the lower computer to achieve data transmission and subsequent detection data processing.Finally,the experimental simulation shows that the hierarchical control system is stable and reliable,and the upper and lower computer can communicate in real time,which improves the working speed and processing ability of the climbing wall robot,and improves the detection efficiency,and has a high level of intelligence.

关 键 词:爬壁机器人 控制系统 人机交互界面 

分 类 号:TH16[机械工程—机械制造及自动化] TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象