检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭士荦 许江宁[1] 李峰[1] GUO Shi-luo XU Jiang-ning LI Feng(Department of Navigation, Navy University of Engineering, Wuhan 430033, Chin)
出 处:《中国惯性技术学报》2017年第4期436-441,共6页Journal of Chinese Inertial Technology
基 金:国家自然科学基金(41574069);国家自然科学基金(61503404);国家自然科学基金(41404002)
摘 要:容积卡尔曼滤波(CKF)是常用的惯性导航系统(INS)初始对准算法。针对在模型失配和观测噪声干扰情况下常规容积卡尔曼滤波出现精度下降甚至发散的问题,提出了一种自适应渐消滤波算法,引入多重渐消因子对预测误差协方差阵进行调整。设计了基于滤波残差序列统计特性的滤波状态x^2检验条件,检测滤波器故障并确定是否引入渐消因子,使渐消因子的引入时机更加合理,有效增强了算法的自适应性。仿真试验表明,新算法可以有效提高初始对准精度及鲁棒性。The filtering accuracy of the cubature Kalman filter is tend to decrease or even diverse when there are disturbances of inaccurate model and/or observation noise. To solve this problem, an improved adaptive fading filter is proposed, which introduce multiple fading factors to adjust the covariance matrix of the prediction errors. A chi-square test method is designed to check the filter's fault and determine at what time the fading factors are introduced, thus the introduction of the fading factor is more reasonable, and the algorithm's adaptability is enhanced. Simulation and experiment are made for the nonlinear initial alignment of SINS suffered from complex observation noise interference, and the results show that the proposed algorithm can effectively improve the accuracy and robustness of the initial alignment.
关 键 词:容积卡尔曼滤波 惯性导航系统 初始对准 自适应渐消滤波 X^2检验
分 类 号:U666.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145