检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜凯[1] 宋永超 巨永锋[1] 姚洁茹 房建武[1] 包旭
机构地区:[1]长安大学电子与控制工程学院,西安710064 [2]江苏省交通运输与安全保障重点实验室,江苏淮安223003
出 处:《交通运输系统工程与信息》2017年第5期45-52,59,共9页Journal of Transportation Systems Engineering and Information Technology
基 金:国家自然科学基金(61603057);陕西省科技工业攻关项目(2015GY033);江苏省交通运输与安全保障重点建设实验室开放基金资助(TTS2015-04)~~
摘 要:针对大多数道路检测方法存在光照变化敏感,阴影导致误检、漏检等问题,提出了一种改进的光照不变道路检测算法.首先将道路图像RGB空间转换为几何均值对数色度空间;然后根据Shannon熵确定相机轴标定角θ,利用Chebyshev理论去除θ奇异值,得到光照无关图Iθ;其次通过随机抽样方法提取道路样本点,包括道路基准样本点和道路参考样本点;最后建立道路置信区间分类器,将道路从背景中分离出来.实验结果表明,该算法能很好地消除光照变化和阴影对道路检测的影响,检测精度高,能满足实际道路检测实时性要求.Aiming at the problems that most road detection methods are sensitive to variation of illumination and shadow, which lead to false detection or leak detection, improved road detection algorithm based on illumination invariant is proposed. First, the thesis transformed RGB space of road images into logchromaticity space by geometric mean. And then, according to Shannon entropy, camera angle θ of axis calibration is determined. Using Chebyshev's theory, it removed singular value of θ and got illumination invariant images Iθ. Besides, some sampling points of road are extracted by a random sampling, which include standard sample points and referenced sample points. Finally, a confidence interval classifier of road is established, which could detect road area. The experimental results show that the proposed algorithm not only can effectively eliminate the influence of illuminant variance and shadows on road detection, but also can guarantee high detection precision and real-time requirements.
关 键 词:智能交通 道路检测 光照不变 辅助驾驶 阴影去除
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198