基于ISS特征点结合改进ICP的点云配准算法  被引量:62

Point Cloud Registration Algorithm Based on the ISS Feature Points Combined with Improved ICP Algorithm

在线阅读下载全文

作  者:李仁忠[1] 杨曼[1] 田瑜[1] 刘阳阳[1] 张缓缓[1] 

机构地区:[1]西安工程大学电子信息学院,陕西西安710048

出  处:《激光与光电子学进展》2017年第11期306-313,共8页Laser & Optoelectronics Progress

基  金:中国纺织工业联合会科技指导性项目(2017071);西安工程大学研究生创新基金资助项目(CX201733)

摘  要:针对点云配准时间长、收敛缓慢、对应点匹配易错等缺点,提出一种基于内部形态描述子(ISS)特征点结合改进迭代最近点(ICP)的点云配准算法。首先采用ISS算法进行点云特征提取,并以快速点特征直方图进行特征描述,然后通过采样一致性算法完成点云的初始配准,使两片不同角度点云获得一个相对较好的初始位姿,最后通过k维树近邻搜索法加速对应点对的查找,以提高点云ICP精细配准效率。实验结果表明,与传统配准算法相比,该算法配准精度高,而且执行速度快。Aiming at the problems of long reconstruction time, slow convergence and error matching corresponding points for the point cloud registration, a new algorithm based on the intrinsic shape signature (ISS) feature points combined with the improved iterative closest point (ICP) algorithm is proposed. Firstly, the feature points of point cloud are extracted by the ISS algorithm and described by the fast point feature histograms algorithm. Then, the initial registration of point cloud is completed by using the sample consensus initial alignment algorithm to make the two different angle point clouds obtain a relatively good initial position. Finally, the 1CP registration efficiency is promoted by the k-dimension tree nearest neighbor search algorithm. The experimental results show that the proposed algorithm has higher registration accuracy and faster execution speed than the traditional registration algorithms.

关 键 词:机器视觉 点云配准 特征提取 初始配准 精细配准 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象