检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京邮电大学模式识别与智能系统实验室,北京100876
出 处:《山东大学学报(理学版)》2017年第9期7-12,18,共7页Journal of Shandong University(Natural Science)
基 金:111计划资助项目(B08004);国家自然科学基金资助项目(61300080;61273217;61671078);国家教育部博士点基金资助项目(20130005110004)
摘 要:实体关系抽取是知识图谱技术的重要环节之一。英文实体关系抽取的研究已经比较成熟,相比之下,中文实体关系抽取的发展却并不理想。由于相关语料的匮乏,中文实体关系抽取的发展受到了一定的限制。针对这一问题,COAE2016在任务三中提出了中文实体关系抽取任务。通过分别使用了基于模板、基于SVM与基于CNN的实体关系抽取算法解决了这一问题,并根据其在COAE2016任务三的评测数据集上的效果,对比分析了三种实体关系抽取算法的优缺点。实验证明,基于SVM的算法和基于CNN的算法均在评测数据集上表现出了良好的效果。Entity relation extraction is one of the important procedures of knowledge graph technology. Research on en- tity relation extraction in English is comparatively developed. By contrast, the development of Chinese entity relation extraction is not ideal, and it is mainly because the lack of corpus. In order to solve this problem, COAE2016 proposes a Chinese entity relation extraction task in task 3. In this paper, we use three algorithms to solve the problem : a pattern based algorithm, a SVM based algorithm and a CNN based algorithm respectively. Then, we analyze the advantages and the disadvantages of the three algorithms according to the effects of the dataset in COAE2016 Experiments show that the SVM based algorithm and the CNN based algorithm are useful to extract entity relation.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15