检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马淑梅[1] 谢涛[1] 周云中 李爱平[1] 杨连生[1]
机构地区:[1]同济大学机械与能源工程学院,上海201804
出 处:《机电一体化》2017年第8期23-30,共8页Mechatronics
基 金:上海经信委资助项目(沪CXY-2013-25);上海科委资助项目(14111104400)
摘 要:针对船舶外板喷涂机器人多层喷涂轨迹优化问题,以提高喷涂质量和效率为目标,提出一种平面多层喷涂轨迹优化方法。根据平面单层膜厚分布,推导建立平面多层漆膜分布模型,并采用快速非支配排序遗传算法(Non-dominated sorting genetic algorithm Ⅱ,NSGA-Ⅱ)优化各层喷涂轨迹。通过对船舶外板进行多层仿真喷涂,与未优化的喷涂轨迹比较,提高了漆膜均匀性和喷涂效率,验证了轨迹优化方法的合理性;与传统遗传算法优化对比,结果验证了NSGA-Ⅱ算法的有效性。To solve the problem of optimizing multi-layer trajectory for ship outer plate painting robot, a planar multi-layer spray trajectory optimization method was proposed based on the purpose of improving painting quality and efficiency. The multi-layer paint thickness distribution model was deduced from the paint distribution for one layer on the planar, and the non-dominated sorting genetic algorithm Ⅱ ( NSGA - Ⅱ) was used to optimize the spraying trajectory. Compared with the un-optimized spraying trajectories, the coating uniformity and the spraying efficiency are improved by the multi-layer simulation spraying of the ship outer plate, and the rationality of the trajectory optimization method is verified. Compared with the traditional genetic algorithm, The effectiveness of NSGA - Ⅱ algorithm was proved.
关 键 词:船舶外板 喷涂机器人 轨迹优化 NSGA-Ⅱ算法
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15