检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学,车辆传动国家重点实验室,北京100081
出 处:《汽车工程》2017年第11期1223-1231,共9页Automotive Engineering
基 金:国家自然科学基金(51005017,51575043和U1564210)资助
摘 要:为有效地改善双模式混合动力车辆的性能,设计了基于预测控制的能量管理策略,通过实时优化进行功率在线分配,提出了未来车速预测方法。通过K均值聚类算法将工况分为平稳工况与快变工况两类,实时判断车辆当前所处工况类别,并在平稳工况下,基于马尔科夫链预测车速,在快变工况下,基于径向基神经网络预测车速,以获得最优的预测精度。仿真结果的对比验证了所提出的车速预测方法的准确性和能量管理策略的有效性。In order to effectively improve the performance of a dual-mode hybrid electric vehicle,a predictive-control-based energy management strategy is devised to conduct online power distribution through real-time optimization,and a vehicle upcoming speed prediction method is proposed.Driving conditions are classified into stationary condition and quickly-changing condition though K-means clustering algorithm.Then current vehicle driving condition is determined real-time,and for obtaining best prediction accuracy,vehicle speed is predicted based on Markov-chain for stationary condition,while vehicle speed is predicted based on radial basis neural network for quickly-changing condition,.The comparison of simulation results verifies the correctness of vehicle speed prediction method proposed and the effectiveness of energy management strategy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15