中低速磁浮列车位置信号检测算法研究  被引量:1

Research on position signal detection algorithm of medium and low speed maglev train

在线阅读下载全文

作  者:戴春辉[1] 谭磊 龙志强[1] 谢云德 DAI Chun-Hui;TAN Lei;LONG Zhi-Qiang;XIE Yun-De(National University of Defense Technology, Changsha, 410073, China;Beijing holding magnetic suspension technology development Co. , Ltd. Beijing , 100000, China)

机构地区:[1]国防科技大学,长沙410073 [2]北京控股磁悬浮技术发展有限公司,北京100000

出  处:《黑龙江大学工程学报》2017年第4期55-61,67,共8页Journal of Engineering of Heilongjiang University

基  金:国家重点研发计划高速磁浮列车定位测速技术工程化研究(2016YFB1200602))

摘  要:磁浮列车作为一种新型的轨道交通工具正被世界上许多国家所关注。磁浮列车运行时与轨道无接触,为测得磁浮列车的实时相对位置信号,设计了一种基于交叉感应环线的相对定位系统,该系统仅包含一条沿轨道铺设的感应环线、一个车载接收天线以及配套的信号处理装置。为消除车载接收信号中的干扰,应用了一种离散跟踪微分器滤波算法。实验证明,该算法可以实时跟踪接收线圈接收到的列车位置信号,滤除高频干扰,同时还可以提取出该位置信号的微分信号。利用离散跟踪微分器滤波算法,在只使用单接收线圈的情况下,磁浮列车的相对位置检测精度为15 cm。As a new-type rail transportation tool, the maglev train is concerned by many countries all over the world. The maglev train does not contact with the rail during running. In order to measure the real-time relative positioning signal of the maglev train, a relative positioning system on basis of the cross induction loop line is designed. The scheme adopts a cross induction loop line laid along the track, vehicle-mounted single receiving coil and relevant signal processing case. For the purpose of eliminating the interference in the vehicle-mounted receipt signal, a discrete tracking differentiator filtering algorithm is applied. The experiment shows that the algorithm can track the train position signal received by the coil in real time, eliminate the high frequency interference, and meanwhile can also extract the smoothing differential signal of the position signal. By using the new-type discrete tracking differentiator filtering algorithm, the relative positioning accuracy of the maglev train can reach 15 cm.

关 键 词:磁浮列车 相对定位 跟踪微分器(TD) 滤波算法 

分 类 号:O436[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象