检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:阿力木·米吉提[1]
机构地区:[1]新疆广播电视大学远程教育学院,新疆乌鲁木齐830049
出 处:《应用数学》2018年第1期60-78,共19页Mathematica Applicata
基 金:Supported by the Special Training Research Project for Science and Technology Talents of Minority Nationalities in Xinjiang(2016D0211)
摘 要:本文研究附有不可靠服务台和无等待能力的M/G/1/1排队模型时间依赖解的渐近行为.首先利用强连续算子半群理论证明此排队系统模型正时间依赖解的存在唯一性.然后通过研究该模型相应主算子的谱,分别得到0是其主算子及其共轭算子的几何重数为1的特征值与虚轴上除了0外其他所有点都属于该模型主算子的豫解集.最后将上述结果结合在一起推出该模型的时间依赖解强收敛于其稳态解.In this paper, we study the asymptotic behavior of the time-dependent solution of the M/G/1/1 queue with unreliable server and no waiting capacity. First, by using the strong continuous semigroup theory, we prove the existence and uniqueness of the nonnegative time-dependent solution of the system model. Next, by studying spectral properties of the operator corresponding to the system model, we obtain that zero is an eigenvalue of the operator and its adjoint operator with geometric multiplicity one and all points on the imaginary axis except zero belong to the resolvent set of the operator. Thus,by combining the above results, we deduce that the time-dependent solution of the system model converges strongly to its steady state solution.
关 键 词:C0-半群 dispersive算子 特征值 几何重数 豫解集
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49