带有共振的二阶哈密顿系统非平凡解的存在性  被引量:1

The Existence of Nontrivial Solutions to Second Order Hamiltonian Systems Which Are Resonant at Infinity

在线阅读下载全文

作  者:单远 

机构地区:[1]南京审计大学理学院,南京211815

出  处:《数学年刊(A辑)》2017年第4期469-476,共8页Chinese Annals of Mathematics

摘  要:本文研究二阶哈密顿系统的非平凡解问题.假设系统中的非线性项V′是渐近线性的.利用变分法,通过系统对应泛函的小扰动的临界点来建立系统的Palais-Smale序列,进而说明该序列的有界性.与一般做法不同的是,本文对V′不限定Landesman-Lazer条件.In this paper, the author considers nontrivial solutions to the second order Hamiltonian system. Nontrivial solutions are obtained under the assumption that the asymptotically linear nonlinearity V' is resonant at infinity. The arguments are variational. The author constructs the Palais-Smale sequence from a sequence of exact critical points of nearby functionals, possessing extra properties which help to insure its boundness. Different from the existing results in the literature, we do not make any Landesman-Lazer resonance conditions on V'.

关 键 词:二阶哈密顿系统 共振条件 MORSE理论 非平凡解 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象