非平凡解

作品数:471被引量:439H指数:10
导出分析报告
相关领域:理学更多>>
相关作者:姚仰新裴瑞昌唐春雷康东升吕登峰更多>>
相关机构:华南理工大学华中师范大学曲阜师范大学太原理工大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金山西省自然科学基金山东省自然科学基金广东省自然科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
一类缺乏紧性的Kirchhoff方程非平凡解的存在性
《遵义师范学院学报》2025年第2期83-85,共3页向会 储昌木 
国家自然科学基金项目(11861021)。
考虑全空间R^(N)上一类新的Kirchhoff方程,利用山路引理获得其非平凡解的存在性,并且新的结果不需要通常的紧性条件.
关键词:KIRCHHOFF方程 全空间 山路引理 非平凡解 
一类带权函数的分数阶p-Laplacian方程解的存在性
《闽南师范大学学报(自然科学版)》2025年第1期64-72,共9页蒋延 许勇强 
国家自然科学基金项目(11571159);福建省自然科学基金项目(2017J01562)。
研究一类带权函数的分数阶p-Laplacian方程,运用山路引理证明了该分数阶p-Laplacian方程在一定条件下存在非平凡解。
关键词:分数阶p-Laplacian算子 非平凡解 山路引理 
一类二阶微分方程Riemann-Stieltjes积分边值问题的非平凡解
《湖州师范学院学报》2025年第2期8-18,共11页张巧 柏仕坤 
重庆市自然科学基金项目(cstc2020jcyj-msxmX0123)。
运用拓扑度理论研究二阶微分方程Riemann-Stieltjes积分边值问题非平凡解的存在性。将该问题转化为与之等价的积分方程,在合适的空间构造算子方程,并借助不动点定理获得该算子不动点的存在性,进而获得原问题的非平凡解。
关键词:边值问题 非平凡解 拓扑度 
一类次线性Schrödinger-Maxwell方程无穷多非平凡解的存在性
《应用数学进展》2025年第1期105-111,共7页汪敏庆 游仁青 陆晓娟 
本论文由2022年广西区教育厅高校中青年科研基础能力提升项目(2022KY1623)资助。
本文借助变分法和临界点理论研究一类次线性Schrödinger-Maxwell方程无穷多非平凡解的存在性问题{ −Δu+V(x)u+αϕf(u)=g(x,u),x∈R3,−Δϕ=2αF(u),x∈R3.其中α>0,V(x)∈C1(R3,R),V(x)>0。在f,g符合相关条件下,p∈(1,2)。In this paper...
关键词:Schrödinger-Maxwell方程 非平凡解 临界点理论 变分法 次线性 
耦合Klein-Gordon-Born-Infeld方程的非平凡解
《南开大学学报(自然科学版)》2024年第6期70-75,共6页廖茂君 李麟 
国家自然科学基金(12361024);重庆工商大学研究生创新型科研项目(yjscxx2024-284-57)。
研究了一个带有径向位势的非线性Klein-Gordon-Born-Infeld系统,在对非线性项f (u)作出合适的假设下,引入加权Sobolev空间中的嵌入定理,利用变分法,山路定理,对称山路定理,建立了在加权Sobolev空间中非平凡解和高能量序列解的存在性.
关键词:山路定理 对称山路定理 变分法 非平凡解 
具有奇异和对数非线性项的p&q-Laplace问题的多重非平凡解
《数学的实践与认识》2024年第10期194-204,共11页张学梅 索洪敏 王臣熙 王梅 
国家自然科学基金(11661021,11861021)。
文章研究具有奇异和对数非线性项的p&q-Laplace问题.应用变分方法和非光滑泛函的临界点理论获得两个非平凡解的存在性。
关键词:对数p&q-Laplace方程 奇异非线性项 变分方法 非光滑泛函临界点理论 
一类含有参数的Kirchhoff-型差分方程多个非平凡解的存在性
《吕梁教育学院学报》2024年第3期99-101,共3页秦国强 
研究了一类含有参数的Kirchhoff-型差分方程边值问题多个非平凡解的存在性。在适当的假设条件下,当参数λ∈(1/pB_(c1)(d/2^(1/p)),min{1/pN^(p-1)A(c1),1/pN^(p-1)A(N^(p-1)M2d_(p))})时,得到该差分方程两个非平凡解。最后,举例说明文...
关键词:Kirchhoff-型差分方程 边值问题 临界点理论 非平凡解 
一类含有对数项的Kirchhoff-Choquard方程解的存在性
《理论数学》2024年第8期60-67,共8页徐武波 蔡亚情 
本文研究了一类具有对数非线性的Kirchhoff-Choquard方程解的存在性。利用经典山路引理,证明了相应的能量泛函具有山路结构,且满足PS条件,从而方程至少存在一个非平凡解。In this article, the existence of solutions to a Kirchhoff-C...
关键词:Kirchhoff-Choquard方程 对数非线性项 非平凡解 山路引理 
ϕ-压缩不动点理论在Lidstone边界条件下弹性梁方程中的应用
《理论数学》2024年第8期180-186,共7页王瑞 
运用几乎ϕ-压缩不动点理论讨论了带Lidstone边界条件的弹性梁方程{ y(4)(x)+(k1+k2)y″(x)+k1k2y(x)=f(x,y(x)), x∈[ 0,1 ],y(0)=y(1)=y″(0)=y″(1)=0非平凡解的存在唯一性,其中f:[ 0,1 ]×[ 0,+∞ )→[ 0,+∞ )为连续函数,k1和k2均...
关键词:-压缩不动点 弹性梁方程 格林函数 非平凡解 
带有对数非线性项的双相问题非平凡解的存在性
《贵州科学》2024年第3期62-67,共6页熊明燕 储昌木 
国家自然科学基金(No,11861021)。
研究了一类带有对数非线性项的双相问题的非平凡解。通常的双相问题的非线性项是多项式形式,但是本文所处理的非线性项是对数非线性项。通过计算可知此类带有对数非线性项双相问题的能量泛函满足山路型结构,再利用序列的有界性得到了Pal...
关键词:双相问题 对数非线性项 山路引理 非平凡解 
检索报告 对象比较 聚类工具 使用帮助 返回顶部