基于高光谱技术的羊肉含水率无损检测  被引量:5

Nondestructive detection of mutton moisture content based on hyperspectral technique

在线阅读下载全文

作  者:王迪 张敬埔 张珏 张晶[1] 李海军 田海清[1] 

机构地区:[1]内蒙古农业大学机电工程学院,内蒙古呼和浩特010018 [2]内蒙古师范大学物理与电子信息学院,内蒙古呼和浩特010022

出  处:《食品工业科技》2018年第4期215-218,共4页Science and Technology of Food Industry

基  金:国家自然科学基金资助项目(31160248);国家自然科学基金资助项目(41261084)

摘  要:利用高光谱成像系统(1000~2500 nm)对羊肉含水率进行无损检测研究。对108个羊肉样本进行光谱信息采集,通过标准正态变换法、归一化法、去趋势校正法、S-G卷积平滑法、导数法、多元散射校正法对原始光谱进行预处理,对全波段下的原始光谱和预处理后的光谱建立偏最小二乘回归(PLSR)模型,优选出的最佳预处理算法为去趋势校正法。原始数据经去趋势校正法预处理后,采用相关系数法选取特征波长,建立特征波长下羊肉含水率的PLSR模型和逐步多元线性回归(SMLR)模型。结果表明,SMLR模型对含水率预测效果最好,校正集相关系数Rc为0.8597,标准误差SEC为0.0521;预测集相关系数Rp为0.8654,标准误差SEP为0.0387。研究表明,利用高光谱成像技术检测羊肉含水率是可行的。Nondestructive detection of mutton moisture content was studied by hyperspectral imaging system(1000~2500 nm).Spectral information was collected from 108 mutton samples. The original spectra were pretreated by standard normal variate,normalization,detrend correction,Savitzky-Golay,derivative and multiple scattering correction. The partial least squares regression(PLSR) model was established for original and pre-processed spectra in the whole band. The best preprocessing algorithm was the detrend correction method. The original data was pretreated by the detrend correction method,and the characteristic wavelength was selected by the correlation coefficient method. The PLSR and stepwise multiple linear regression(SMLR) model for the mutton moisture content were established.The results showed that the SMLR model had the best effect on the prediction of moisture content.The correlation coefficient(R_c) and standard error(SEC) for calibration set were 0.8597 and0.0521 respectively,and correlation coefficient(R_p) and standard error(SEP) for predictive set were 0.8654 and 0.0387 respectively.The results showed that it is feasible to detect mutton moisture content by hyperspectral imaging technology.

关 键 词:高光谱技术 羊肉 含水率 无损检测 

分 类 号:TS207.3[轻工技术与工程—食品科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象