检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:祁应楠[1] QI Yingnan(College of Mathematics and Computer Science,Ningxia Normal University, Guyuan Ningxia 75600)
机构地区:[1]宁夏师范学院数学与计算机科学学院,固原756000
出 处:《宁夏师范学院学报》2018年第4期9-15,41,共8页Journal of Ningxia Normal University
基 金:宁夏师范学院"西部一流"学科教育学项目(YLXKYB1707)
摘 要:在非均匀网格上提出了数值求解两点边值问题的高精度紧致差分格式.首先基于函数的泰勒级数展开,给出了一阶导数和二阶导数在非均匀网格上的差分逼近式;然后结合原模型方程,得到了两点边值问题在非均匀网格上的高精度紧致差分格式,格式具有3-4阶精度;最后,通过数值算例验证了本文格式较文献中已有的格式具有更高的精度和更高的分辨率的优点.A high-order compact finite difference scheme on the non-uniform grid is proposed to solve the two-point boundary value problem.Based on the Taylor series,the approximate expressions for the first-order and second-order derivatives are constructed.Then a high order compact difference scheme for the two-point boundary value problem is got by using the original equation.At last,the numerical solutions show that the present scheme has many advantages such as more accurate than the existing schemes and higher resolutions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.219.125