基于CRF预分割和NSCT的多聚焦图像融合  被引量:1

Multi-focus image fusion based on CRF pre-segmentation and NSCT

在线阅读下载全文

作  者:严雨璐 吴谨[1] 邓慧萍[1] 宋灿 YAN Yulu;WU Jin;DENG Huiping;SONG Can(College of Information Science and Technology, WuHan University of Science and Technology, WuHan 438001, China)

机构地区:[1]武汉科技大学信息科学与工程学院,湖北武汉430081

出  处:《电视技术》2018年第1期7-12,共6页Video Engineering

基  金:国家自然科学基金资助项目(No.61502357)

摘  要:针对基于多尺度分解的图像融合算法在提高图像模糊区域质量的同时却降低了清晰区域质量的问题,提出了一种结合CRF预分割与NSCT的多聚焦图像融合算法。该算法首先利用条件随机场概率模型对图像进行预分割,将图像预分割为清晰区域、模糊区域和两者的交界区域;然后对图像进行NSCT分解,低频子带系数采用加稀疏约束的非负矩阵分解算法融合,高频子带系数,在交界区域采用方向特征对比度的方法融合,在非交界区域选取清晰度高的系数融合。最后经NSCT逆变换得到最终的融合图像。该方法的融合效果在提高了图像清晰度的同时又有效保持了图像的边缘信息。In this paper, focusing on the issue based on multi-scale decomposition of the image fusion algorithm to improve the quality of the image blurring area while reducing the quality of a clear area, a multi-focus image fusion algorithm combining CRF pre-segmentation and NSCT transformation was proposed. Firstly, the image is pre-segmented into three regions: the clear region, the fuzzy region and the boundary region which based on the probability model of conditional random field. And then, the image is decomposed by NSCT transformation, the fusion principle of low frequency sub-band coefficients is based on a constrained sparse algorithm for nonnegative matrix factorization algorithm, the high frequency sub-band coefficients are fused in the boundary region using a method which selected the maximal contrast values of its directional feature, and the coefficients with high sharpness in the two images are directly selected as the fusion result in the non-boundary regions. The fusion image was reconstructed using the inverse NSCT. The experimental results show that the fusion effect of the method can improve the image clarity while maintaining the edge information of the image.

关 键 词:预分割 条件随机场 NSCT 非负矩阵分解 多聚焦图像融合 

分 类 号:TN919.85[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象