多项时间分数阶扩散方程各向异性线性三角元的高精度分析  被引量:3

HIGH ACCURACY ANALYSIS OF ANISOTROPIC LINEAR TRIANGULAR ELEMENT FOR MULTI-TERM TIME FRACTIONAL DIFFUSION EQUATIONS

在线阅读下载全文

作  者:王芬玲[1] 樊明智[1] 赵艳敏[1] 史争光 石东洋 Wang Fenling;Fan Mingzhi;Zhan Yanmin;Shi Zhengguang;Shi Dongyang(School of Mathematics and Statistics,Xuchang University,Xuchang 461000,China;School of Economic Matnematics,Southwestern University of Finance and Economic,Chengdu 611130,China;School of Mathematics and Statistics,Zhengzhou University,Zhengzhou 475001,China)

机构地区:[1]许昌学院数学与统计学院,许昌461000 [2]西南财经大学经济数学学院,成都611130 [3]郑州大学数学与统计学院,郑州450001

出  处:《计算数学》2018年第3期299-312,共14页Mathematica Numerica Sinica

基  金:国家自然科学基金(11101381;11471296);河南省教育厅项目(16A110022;17A110011)

摘  要:在各向异性网格下,针对具有Caputo导数的二维多项时间分数阶扩散方程,给出了线性三角形元的高精度分析.首先,基于线性三角形元和改进的L1格式,建立了一个全离散逼近格式,并证明了其无条件稳定性;其次,利用有限元插值算子与Riesz投影算子之间的关系及相关的高精度结果,导出了超逼近性质.进而,借助于插值后处理技术得到了超收敛估计.值得指出的是,单独利用插值算子或Riesz投影都无法得到上述超逼近和超收敛结果.最后,利用数值算例验证了理论分析的正确性.此外,对一些常见的有限单元在该方程的数值逼近方面,作了进一步探讨.High accuracy analysis of linear triangular element is proposed for two-dimensional multi-term time fractional diffusion equations with Caputo fractional derivative on anisotropie meshes. Firstly, based on linear triangular element and modified L1 scheme, a fully-discrete approximate scheme is established and the unconditional stability analysis is investigated. Secondly, by use of the relationship between the interpolation operator and Riesz projection operator, superclose property is derived by related known high accuracy results. Moreover, the superconvergence estimate is obtained through the interpolation postprocessing tech- nique. It is worth mentioning that the above superclose and superconvergence results will not be derived by the interpolation operator and Riesz projection operator alone. Finally, numerical results are provided to confirm the validity of our theoretical analysis. Further- more, some popular finite elements of numerical approximation for the focused equation are investigated.

关 键 词:多项时间分数阶扩散方程 各向异性三角形元 全离散格式 无条件稳定 超逼近和超收敛 

分 类 号:O241.8[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象