检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江门职业技术学院电子与信息技术系,广东江门529090 [2]赤峰学院建筑与机械工程学院,内蒙古赤峰024000
出 处:《信息通信》2018年第6期42-44,共3页Information & Communications
摘 要:为解决点云特征区域分割过程中的过分割和欠分割问题,提出一种多聚类混合数据分割算法。算法首先利用改进的K-means聚类将散乱点云模型划分出平坦区域与特征区域;再利用基于高斯球的Mean-shift聚类对特征区域进行细分割,接着使用区域生长对细分割后的结果进行调整,最终实现点云数据的准确分割。并用该算法与K-mans、Mean-shift算法对相同模型在相同参设下进行分割实验,其结果表明,该算法能有效、准确地根据点云特征类型实现数据分割,同时有效避免特征的过分割和欠分割现象。
关 键 词:数据分割 K-MEANS聚类 Mean-shift聚类
分 类 号:TP391.72[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157