AOD炉炉衬风口侵蚀识别方法的研究  

Research on Tuyere Erosion Identification Method of AOD Furnace Liner

在线阅读下载全文

作  者:邱东[1] 郭红涛[1] 刘明硕[1] QIU Dong;GUO Hong-tao;LIU Ming-shuo(Department of Electrical and Electronic Engineering,Changchun University of Technology,Changchun 130012,China)

机构地区:[1]长春工业大学电气与电子工程学院,吉林长春130012

出  处:《计算机技术与发展》2018年第6期133-136,共4页Computer Technology and Development

基  金:吉林省科技发展计划项目(20120420)

摘  要:低碳铬铁合金冶炼(简称AOD冶炼)是一个复杂多变的物理化学反应过程,对炉衬的侵蚀时刻在进行,影响炉衬的使用寿命。因此,对炉衬侵蚀状态的检测、监控是非常必要的。在现有的检测方法中,很少有方法是对侵蚀面积进行直观体现的。基于此,设计了一种基于图像特征分析的AOD炉炉衬风口侵蚀识别方法,运用数字图像处理技术实现炉衬风口侵蚀面积的提取。该方法通过对采样图像进行图像增强,再进行高斯滤波处理,最后采用阈值处理、数学形态学方法来提取缺陷信息。为验证该方法的有效性,设计了模拟实验装置,用工业CCD摄像机获取炉衬样品检测的图像,进行缺陷识别处理。实验结果表明,系统检测图像能够明确反映损伤的面积信息,误差范围在3%之内。Smelting of lowcarbon ferrochrome alloy( AOD smelting) is a complicated and changeful reaction process of physics and chemistry.The corrosion of lining is always in progress,and the service life of lining is affected. Therefore,it is necessary to detect and monitor the state of lining.In the existing methods of detection,there is little way to directly reflect the area of erosion.For this,we design a liner tuyere erosion of AOD furnace identification method based on image characterized analysis,and realize the extraction of liner tuyere erosion by digital image processing technology.The method enhances the sampled image and carries on the Gaussian filtering for that.Finally the defect information is extracted through threshold processing and mathematical morphology.In order to verify the validity of the proposed method,an experimental system is developed,which uses industrial CCD to capture the images of liner samples and then identify defects of the sample.Experiments showthat the information of erosion area can be clearly reflect by the system 's output and the range of error is within 3%.

关 键 词:炉衬探伤 图像增强 阈值处理 缺陷识别 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象