检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜翠真[1] DU Cui-zhen(School of Mathematical Science,Huaibei Normal University,Huaibei 235000,China)
机构地区:[1]淮北师范大学数学科学学院,安徽淮北235000
出 处:《洛阳师范学院学报》2018年第8期85-87,91,共4页Journal of Luoyang Normal University
基 金:淮北师范大学教研项目(2016jyxm027)
摘 要:数学思维方法以数学科学为核心,以数学的思想、精神和内容为组成部分,反映了数学科学所具有的抽象性、统一性、艺术性、简洁性、工具性和传播性等特征.数字的形式美法则与艺术设计中的完全一致,设计思维兼顾艺术思维和科学思维两种思维的特点,数学与艺术的一致性来源于这两种思维的统一性.数学以理性思维表达感性经验,艺术设计则以感性思维的形式来描述理性思维的结果.在现代艺术设计实践中,普遍存在着数学思维方法的运用,并有效提高了设计者的分析能力、观察能力、逻辑推理能力以及应用知识的能力.Mathematical thinking method, with mathematical science as the core, and mathematical spirit, thought and content as its components, reflects the characteristics specific to mathematical sciences, such as ab- stractness, unity, artistry, simplicity, instrumentality, and communicability. Mathematics is in complete accord with art design in terms of aesthetic principles. Design thinking has the features of both artistic thinking and scien- tific thinking, so the consistency of both mathematics and art derives from the unity of the two kinds of thinking. Mathematics expresses perceptual experience with rational thinking, while art design describes the result of rational thinking in the fore1 of emotional thinking. In the practice of modem art design, the comprehensive application of mathematical thinking method has effectively improved the designer' s ability of analysis, observation, logical rea- soning and knowledge application.
分 类 号:G420[文化科学—课程与教学论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.118.113